Lect. 24: Data Converters

Data Converters

- ADC: Analog to Digital Converter
- DAC: Digital to Analog Converter

Why data conversion?
Digital Signal Processing is very powerful: DSP is better if possible
Real world is made up of analog signals

Lect. 24: Data Converters

LNA: Low Noise Amplifier
PA: Power Amplifier
SYN: Frequency Synthesizer

Lect. 24: Data Converters

A/D Process

Input analog signal

Sampled signal

Sample and Hold Circuit
(a)

Electronic Circuits 2 (07/1)
W.-Y. Choi

Lect. 24: Data Converters

Output Code

digital coding
... 01011

Lect. 24: Data Converters

D/A Process

Digital input: ... 01011

Key parameters: Resolution and bandwidth

Lect. 24: Data Converters

Hardware implementation of D/A Converter
Input: $b_{1} b_{2} b_{3} \ldots b_{N}\left(b_{N}\right.$: Least significant bit)

$$
D=\frac{b_{1}}{2^{1}}+\frac{b_{2}}{2^{2}}+\cdots \cdot+\frac{b_{N}}{2^{N}}
$$

Lect. 24: Data Converters

$$
\text { N-bit D/A Converter } \quad D=\frac{b_{1}}{2^{1}}+\frac{b_{2}}{2^{2}}+\cdots+\frac{b_{N}}{2^{N}}
$$

$$
\begin{aligned}
& i_{o}=\frac{\mathbf{V}_{\mathrm{REF}}}{R} b_{1}+\frac{\mathbf{V}_{\mathrm{REF}}}{2 R} b_{2}+\cdots+\frac{\mathbf{V}_{\mathrm{REF}}}{2^{N-1} R} b_{N}=\frac{2 \mathbf{V}_{\mathrm{REF}}}{\boldsymbol{R}}\left(\frac{b_{1}}{2^{1}}+\frac{b_{2}}{2^{2}}+\cdots+\frac{b_{N}}{2^{N}}\right)=\frac{2 \mathbf{V}_{\mathrm{REF}}}{\boldsymbol{R}} \boldsymbol{D} \\
& v_{o}=-V_{R E F} D
\end{aligned}
$$

Lect. 24: Data Converters

N-bit D/A Converter

Accuracy of DAC: $\mathrm{V}_{\text {REF }}$, precision of binary resistors, switch performance
\rightarrow With binary weighted resistors, big differences in R

Lect. 24: Data Converters

D/A Converter: R-2R Ladder

$$
\begin{aligned}
& I_{1}=2 I_{2}=4 I_{3}=\cdots=2^{N-1} I_{N} \\
& I_{1}=\frac{V_{R E F}}{2 R}, I_{2}=\frac{V_{R E F}}{4 R} \ldots I_{N}=\frac{V_{\text {REF }}}{2^{N} R} \\
& i_{o}=\frac{V_{\text {REF }}}{R}\left(\frac{b_{1}}{2}+\frac{b_{2}}{2^{2}}+\ldots+\frac{b_{N}}{2^{N}}\right)=\frac{V_{\text {REF }}}{R} D
\end{aligned}
$$

Many other techniques available.
\rightarrow Active research area:
Resolution, power, manufacturability

